1,021 research outputs found

    Renormalization of dimension-six operators relevant for the Higgs decays hγγ,γZh\rightarrow \gamma\gamma,\gamma Z

    Full text link
    The discovery of the Higgs boson has opened a new window to test the SM through the measurements of its couplings. Of particular interest is the measured Higgs coupling to photons which arises in the SM at the one-loop level, and can then be significantly affected by new physics. We calculate the one-loop renormalization of the dimension-six operators relevant for hγγ,γZh\rightarrow \gamma\gamma, \gamma Z, which can be potentially important since it could, in principle, give log-enhanced contributions from operator mixing. We find however that there is no mixing from any current-current operator that could lead to this log-enhanced effect. We show how the right choice of operator basis can make this calculation simple. We then conclude that hγγ,γZh\rightarrow \gamma\gamma, \gamma Z can only be affected by RG mixing from operators whose Wilson coefficients are expected to be of one-loop size, among them fermion dipole-moment operators which we have also included.Comment: 21 pages. Improved version with h -> gamma Z results added and structure of anomalous-dimension matrix determined further. Conclusions unchange

    Nonlinear optics of fibre event horizons

    Full text link
    The nonlinear interaction of light in an optical fibre can mimic the physics at an event horizon. This analogue arises when a weak probe wave is unable to pass through an intense soliton, despite propagating at a different velocity. To date, these dynamics have been described in the time domain in terms of a soliton-induced refractive index barrier that modifies the velocity of the probe. Here, we complete the physical description of fibre-optic event horizons by presenting a full frequency-domain description in terms of cascaded four-wave mixing between discrete single-frequency fields, and experimentally demonstrate signature frequency shifts using continuous wave lasers. Our description is confirmed by the remarkable agreement with experiments performed in the continuum limit, reached using ultrafast lasers. We anticipate that clarifying the description of fibre event horizons will significantly impact on the description of horizon dynamics and soliton interactions in photonics and other systems.Comment: 7 pages, 5 figure

    Performance evaluation of a multi-user virtual reality platform

    Get PDF
    Virtual Reality (VR) popularity is increasing as it is becoming more affordable for end users. Available VR hardware includes low-end inexpensive devices like Google Cardboard and high-end ones like HTC Vive or Oculus Rift, which are more expensive headsets. Using VR as a platform for content delivery allows better user engagement than other traditional methods, as VR headsets remove external distractions. Multi- user VR applications provide shared experiences where users can communicate and interact in the same virtual space. This shared environment, however, introduces challenges regarding network performance, quality of service (QoS) and sessions privacy. This paper presents a multi-user VR application and aims to evaluate network behaviour in a number of scenarios, including real VR headsets (i.e. Oculus Rift), as well as simulated ones. This QoS analysis is important for the understanding of how many VR users can be simultaneously connected with high image quality

    Record statistics for biased random walks, with an application to financial data

    Full text link
    We consider the occurrence of record-breaking events in random walks with asymmetric jump distributions. The statistics of records in symmetric random walks was previously analyzed by Majumdar and Ziff and is well understood. Unlike the case of symmetric jump distributions, in the asymmetric case the statistics of records depends on the choice of the jump distribution. We compute the record rate Pn(c)P_n(c), defined as the probability for the nnth value to be larger than all previous values, for a Gaussian jump distribution with standard deviation σ\sigma that is shifted by a constant drift cc. For small drift, in the sense of c/σn1/2c/\sigma \ll n^{-1/2}, the correction to Pn(c)P_n(c) grows proportional to arctan(n)(\sqrt{n}) and saturates at the value c2σ\frac{c}{\sqrt{2} \sigma}. For large nn the record rate approaches a constant, which is approximately given by 1(σ/2πc)exp(c2/2σ2)1-(\sigma/\sqrt{2\pi}c)\textrm{exp}(-c^2/2\sigma^2) for c/σ1c/\sigma \gg 1. These asymptotic results carry over to other continuous jump distributions with finite variance. As an application, we compare our analytical results to the record statistics of 366 daily stock prices from the Standard & Poors 500 index. The biased random walk accounts quantitatively for the increase in the number of upper records due to the overall trend in the stock prices, and after detrending the number of upper records is in good agreement with the symmetric random walk. However the number of lower records in the detrended data is significantly reduced by a mechanism that remains to be identified.Comment: 16 pages, 7 figure

    Signature of long-lived memory CD8+ T cells in acute SARS-CoV-2 infection

    Full text link
    Immunological memory is a hallmark of adaptive immunity and facilitates an accelerated and enhanced immune response upon re-infection with the same pathogen1,2^{1,2}. Since the outbreak of the ongoing COVID-19 pandemic, a key question has focused on which SARS-CoV-2-specific T cells stimulated during acute infection give rise to long-lived memory T cells3^{3}. Here, using spectral flow cytometry combined with cellular indexing of transcriptomes and T cell receptor sequencing, we longitudinally characterized individual SARS-CoV-2-specific CD8+^{+} T cells of patients with COVID-19 from acute infection to 1 year into recovery and found a distinct signature identifying long-lived memory CD8+^{+} T cells. SARS-CoV-2-specific memory CD8+^{+} T cells persisting 1 year after acute infection express CD45RA, IL-7 receptor-α and T cell factor 1, but they maintain low expression of CCR7, thus resembling CD45RA+^{+} effector memory T cells. Tracking individual clones of SARS-CoV-2-specific CD8+^{+} T cells, we reveal that an interferon signature marks clones that give rise to long-lived cells, whereas prolonged proliferation and mechanistic target of rapamycin signalling are associated with clonal disappearance from the blood. Collectively, we describe a transcriptional signature that marks long-lived, circulating human memory CD8+^{+} T cells following an acute viral infection
    corecore